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Abstract

This paper describes a prototype system for quickly developing joint military
courses of action. The system, SOCAP (System for Operations Crisis Action
Planning), combines a newly extended version of an Al planning system, SIPE-2
(System for Interactive Planning and Execution), with a color map display and
applies this technology to military operations planning. This paper describes the
Socap problem domain, how SIPE-2 was used to address this problem, and the

strengths and weaknesses of our approach.
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1 Introduction

This paper describes the cooperative work taking place under two projects in the
DARPA /RL Planning Initiative to produce a prototype system for quickly developing
joint military courses of action. One project, at the Artificial Intelligence Center of
SRI International (SRI), is developing a novel planning and execution system based on
several high-performance artificial intelligence (AI) technologies. Another project, at
SRI's Information and Telecommunications Sciences Center, is applying these evolving

technologies to planning problems of the U.S. Central Command (CENTCOM).

As a result of this collaboration, SRI developed SOCAP (System for Operations Cri-
sis Action Planning). It combines a newly extended version of an AI planning system,
SIPE-2 (System for Interactive Planning and Execution), with a color map display and
applies this technology to military operations planning. SOCAP was connected to the
Dynamic Analysis and Replanning Tool (DART) via FMERG® to constitute the sec-
ond Integrated Feasibility Demonstration (IFD-2) for the Planning Initiative. FMERG
elaborates in more detail the Socap transportation plans, and then uses DART to run
a simulation to determine their transportation feasibility. IFD-2 was demonstrated in
early 1992 both at CENTCOM and at the Pentagon. The aim was to demonstrate
the feasibility of applying the Sipe technology for the generation of large-scale military
operations plans (OPLANSs).

The objective of the Socap research effort is to develop decision aids to enable
military planners to produce more flexible and accurate joint militafy courses of action
in less time when responding to a crisis. To develop prototypes that can have a provable
impact in an operational environment, it is necessary for them to be tested by the
military community. Thus, SOCAP was developed by consulting with military operation

planners at CENTCOM 1o elicit their requirements and their knowledge of the planning

!FMERG (Force Module Expanded Requirements Generator) was developed by BBN and ISX
under the DARPA/RL Planning Initiative to bridge the gap between the description of major forces
in a course of action and the description of their corresponding TPFDD-level components required for
DART, which is in operational use and tests a TPFDD (see Section 2) on a transportation feasibility

model.



process. In addition, information from other sources and publically available texts were
used to develop this application. SOCAP successfully generated employment plans for
dealing with specific enemy COAs, and expanded deployment plans for getting the
relevant combat forces, supporting forces, and their equipment and supplies to their
destinations in time for the successful completion of their mission. Input to the system
includes threat assessments, terrain analysis, apportioned forces, transport capabilities,

planning goals, key assumptions, and operational constraints.

This paper describes the Socap problem domain, how SIPE-2 was used to address
this problem, and the strengths and weaknesses of our approach. The cooperative
aspect of the work is important: the domain requirements of the application are driving
some of the research in developing Al planning technologies, and these evolving Al tools

and techniques are being transferred to the application as rapidly as possible.

2 Military Operations Crisis Action Planning

This section briefly describes the Socap problem domain. The military must manage
crises. Good crisis management is characterized by quick response, decisive action,
and flexibility to adapt to the changing situation. Developing a good course of action
(COA), and modifying it as necessary, must take into account a number of factors:
approaches used in past cases that have worked well, novel features of the new situation,
differing priorities for subparts of the crisis, and feasibility of suggested COAs. A COA
should describe an employment plan for dealing with one or more enemy COAs, and
should identify a deployment plan for moving the relevant combat forces, supporting
forces, and their equipment and supplies to their destinations in time for the successful

completion of their mission.

Currently, the military crisis action planning process involves several phases. When
a crisis occurs that requires a military option to be considered, the crisis is assessed
and the situation reviewed to determine if military action is required. If it is, then
tentative COAs are generated based on doctrine, past exercises, and existing concept-

and operations plans. Various estimates are developed for personnel (J1), intelligence
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(J2), operations (J3), logistics (J4), and command and control (J6). The estimates
and recommendations are presented for approval, and the commanders’ estimate is
constructed from these. Final approval is required before a complete OPLAN is gen-

erated.

Next, the force composition, logistics to support the mission, and all the trans-
portation needs are defined, planned, synthesized, and simulated. Time-phased force
deployment lists are generated based on force module libraries or previously developed
deployment lists. These are routed for a detailed transportation feasibility analysis.
The refined TPFDD (Time-phased Force Deployment Data) is approved for both op-
erational and transportation feasibility, and operation orders are developed. Finally,

the operation orders are executed, and monitored.

The crisis action planning process is a distributed, interactive process. Accurate,
timely, and secure exchange of information among geographically separated comman-
ders is required to produce the best plans in the shortest time. Also, the planning
process, as defined above, provides for the maximum reuse of plans where possible.
Uncertainty is inherent in planning a response to a developing crisis and must be han-
dled adequately if plans are to be robust. Other requirements for automating the joint

military operations planning process are given elsewhere [2)].

A typical OPLAN contains approximately a few hundred actions, describing the
employment and deployment of force modules chosen to deter or counter the enemy
threat. A typical TPFDD contains a few thousand entries, each describing which
unit, or part of a force module, is being deployed, where and when it arrives at its
destinations, and by which means it is transported. Each enemy threat may be deterred
or countered with a wide variety of operations that apply differing levels of aggression.
These operations can vary from a show of force, to a blockade or quarantine, to a
complete defensive or offensive operation. There is also a wide variety of units that

have differing capabilities suitable for many different operations.

The number of possible COAs is enormous: developing a COA involves choosing
operations at many levels of detail, military units and resources, and locations and

times of these operations. In addition, rules of engagement need to be observed, oper-
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ational constraints (e.g., troop limits) need to be satisfied, permissions for overflight of
Allied airspace must be observed, and key assumptions need to be made explicit, such
as the nonintervention of third-party forces. Most of these conditions are provided

either in the mission statement or as planning guidance.

For demonstration purposes, SOCAP encodes a typical scenario that involves the use
of U.S. forces to protect the territorial integrity of a friendly country from a neighboring
enemy. A joint force is chosen that has significant defensive, rather than offensive
Capability. The mission statement normally identifies a D-day by which date the
ground forces should be deployed, and a further date by which the defensive operations
should have been completed. Associated with each action is an estimate of its duration,
estimates of the appropriate size of unit it requires, and the location and region where
it takes place. This information is required to “source” the military units in the plan
(i.e., identify actual units); later, this information helps to determine the effects of

deployment delays on subsequent actions.

The primary role of the ground forces is to provide a defensive screen near the border
with the enemy, and to secure key terrain in this border region. The role of the Navy
is to secure sea lines of communication between the friendly territory and its trading
neighbors, and to protect major seaports. The role of the Air Force is to provide air
defense over the territory. In addition, the Navy and Air Force have subsidiary roles
to protect the deployment of ground forces and to support some of their operations,
as with amphibious landings and close air support. Such interdependencies between
actions make it possible to predict the impact of various changes in the situation or

the reduced availability of specific units.

3 The SIPE-2 Planning System

SRI's Al Center has been conducting research into planning and problem-solving
systems for the past three decades. SIPE-2 (System for Interactive Planning and

Execution)? is the most advanced of SRI's planning systems, and provides the core

2GIPE-2 is a trademark of SRI International.



reasoning engine for plan generation in SOCAP. This section briefly describes the fea-
tures of SIPE-2 that are most important to SOCAP; the system has been described in
detail elsewhere [5, 6, 8].

SIPE-2 provides a formalism for describing actions and utilizes the knowledge en-
coded in this formalism, together with its heuristics for handling the combinatorics of
the problem, to generate plans for achieving given goals. Given an arbitrary initial
situation, the system either automatically or under interactive control generates plans,
possibly containing conditionals, to achieve the prescribed goals. The generated plans
include causal information so that during plan execution the system can accept de-
scriptions of arbitrary unexpected occurrences and modify its plans to take these into
account. Unlike expert systems, SIPE-2 is capable of generating a novel sequence of

actions that responds precisely to the situation at hand.

SIPE-2 is a nonlinear Al planning system that plans at different levels of abstraction.
Because this technology is generic and domain-independent, it has the potential to
affect a large variety of problems in fields as diverse as manufacturing, construction,
and the military. Unlike most Al planning research, heuristic adequacy (efficiency) has
been one of the primary goals in the design of SIPE-2. This has enabled its application
to many domains, including the blocks world, planning the actions of a mobile robot,
planning the movement of aircraft on a carrier deck, travel planning, construction
tasks, the problem of producing products from raw materials on process lines under
production and resource constraints, and the military operations planning described in

this paper.

SIPE-2 has implemented several extensions of previous planning systems, including
the use of constraints for the partial description of objects, the incorporation of heuris-
tics for reasoning about resources, and replanning techniques. Its formalism allows
description of planning and simple scheduling problems in terms of the goals to be at-
tained and the various activities that can be undertaken to achieve these goals. One of
the most powerful heuristics for avoiding combinatorics in SIPE-2 is the ability to avoid
frequent consistency checks by temporarily producing invalid plans. The system relies

on plan critics that check for and correct problems in these plans at certain intervals.
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Figure 1: SIPE-2’s View of the Planning Problem

3.1 Describing the Domain in SIPE-2

The inputs and outputs of SIPE-2 are depicted in Figure 1. While the inputs to the
planner attempt to model the “real world,” current Al techniques cannot handle the
full complexity of our everyday world and generally it is an abstraction of the real
world that is represented. The vertical arrows in the figure indicate the relationship of
representation, by which entities in the world are encoded internally in the planning
system. The output is a plan — a partially ordered set of primitive actions and
conditions to be carried out. Conditions the plan expects to be true at certain times
are also included in the plan. A plan can be represented as a directed, acyclic graph
in which each node is an action or condition, and each edge represents a temporal

ordering.

SIPE-2 takes as input a description of the initial state, a description of a set of
actions, a problem descriptor, and a set of rules describing the domain. The initial
state consists of a sort hierarchy, a world model, and a set of deductive rules. The sort

hierarchy represents invariant properties of perpetual objects, describes the classes
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Figure 2: Using Operators to Expand a Plan

to which an object belongs, and allows for inheritance of properties. In SOCAP the
sort hierarchy is used to encode information such as terrain analysis, the attributes of
the combat forces available, and transport capabilities. The world model is a set of
predicates which hold over objects in the sort hierarchy. Some predicates are given
explicitly in the data base, and others are deduced by applying deductive rules to the
data base. Predicates encode information such as operational constraints, assumptions,

and intelligence reports.

An operatoris the planner’s representation of actions or abstractions of actions that
may be performed in the domain. In SOCAP, operators vary from abstract strategies
to specific military operations that can achieve employment or deployment goals. An
operator is input in the system’s formalism and specifies the conditions under which an
action is appropriate, the constraints on the objects in the action, a set of instructions
for performing the action, and the main effects accomplished by the action (additional

context-dependent effects are deduced by the system from deductive rules).

To produce a plan, the planner instantiates operators by binding their variables,
combines these instantiations by ordering them, and then adds additional constraints
to avoid problematic interactions between actions. For example, if a potential resource
conflict is detected between two actions, the planner may order the actions to execute

sequentially or may constrain the action to use different resources. The left side of



Figure 2 depicts SIPE-2 choosing one of a set of operators for each goal in an abstract
plan. This produces the more detailed plan on the right to which the planner has
added an ordering link to avoid a problem it has detected (e.g. a resource conflict).
The graphs in the figure represent plans where each rectangle is a goal or action, and
the edges are temporal ordering links running from left to right. Section 5 describes a

Socap operator and its application during plan generation.

3.2 The User Interface in SIPE-2

Because of the size and complexity of the Socap problem domain and the plans pro-
duced, the user interface is critically important. It proved necessary to have two dif-
ferent interfaces — one for system engineers developing the implementation (the Sipe
interface), and another for the military users (the Socap interface). The map-based
Socap interface is described in Section 5; the Sipe graphical user interface (GUI) is

described here.

Several new interface capabilities were needed to cope with the size of the military
planning problem. For example, the sort hierarchy needed to be displayed graphically
as a tree to help ensure its correctness. The world model, operators, and objects
also needed to be displayed graphically. With commands to aid in generating plans,
viewing complex plans and other information as graphs on the screen, and following
and controlling the planning process, it was necessary to provide easy access to all the
commands. To support this, we carried out a complete redesign and reimplementation .
of the Sipe GUI as part of this research. The new interface is built on Grasper-
CL?® and uses a set of noun menus, each of which brings up a verb menu. The new
interface provides many new capabilities and makes them more easily accessible through

the noun/verb menus. Figure 3 shows the functionality of the new Sipe interface by

3Grasper-CL is a trademark of SRI International. Grasper-CL is a programming-language exten-
sion to Lisp that introduces graphs — arbitrarily connected networks — as a primitive data type.
It includes procedures for graph construction, modification, and queries as well as 2 menu-driven,
interactive display package that allows graphs to be constructed, modified, and viewed through direct

pictorial manipulation.
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Figure 3: SIPE-2 GUI Noun and Verb Menus

depicting the various menus of the GUI (the five nouns are at the top of each menu,

and the verbs for the selected noun are below).

The five nouns let the user choose the level at which the verbs (commands) will
operate. The PROFILE noun activates commands for setting defaults that allow the
user to customize the behavior of the planner. The DOMAIN noun activates com-
mands that apply to the problem domain as a whole, e.g., inputing and inspecting a
domain or solving a problem. The PLAN noun activates comma.nds that apply to a
specific plan, inciuding executing a plan and solving a problem to produce a plan. The
DRAWINGS noun activates commands that draw various data structures. Objects
that can be drawn include plans, operators, the sort hierarchy, the initial world model,
and problems. Finally, the NODE noun activates commands that apply to specific
nodes in the currently drawn plan. Each action and goal in a plan is represented as a

node in the graphical drawing of the plan.

The commands in the NODE menu are particularly helpful when analyzing large
plans which can be difficult to interpret. These commands are used to find and modify
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Figure 4: Socap Plan Highlighting Resource: Fennario Port

nodes, to find resources and predicates at nodes, and to view, by highlighting nodes,
various properties of a plan. The modification options are useful for customizing the
appearance of the drawing on the screen — the user can move nodes around with the
mouse to make the drawing look exactly as desired. An example of using highlightiﬁg
of nodes effectively is the Resource command which can be used to highlight all the
nodes that mention Fennario Port, effectively showing the schedule for that port (as
in Figure 4). While only a part of the plan is shown in the figure, the GUI provides
powerful capabilities for panning over the entire plan, locating a particular part of the

plan, or looking at a birds-eye view of the entire plan.
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3.3 Interactive Planning

While SIPE-2 can generate plans autonomously, it also permits the user to interact with
and control the planning process. In military operations planning, this feature is critical
since the plans are large and complex, and there are many experienced human planners
whose expertise can be used. Because of this, a new and more powerful interactive
search algorithm was designed and implemented. In particular, the interactive search

is now tightly integrated with the GUL

The GUI allows the user to control, when desired, many aspects of the planning
process during joint military operations planning. The user can decide when to apply
certain planning algorithms (known as plan critics), can choose which operator to apply
after the system has determined which ones are applicable, and can choose which object
(e.g., 2 military unit or location) to use for a particular action. At any of these choice
points, the complete power of the GUI is available for inspecting data structures (e.g.,
an operator can be drawn before choosing it). The option of planning automatically
for either one abstraction level or for the rest of the plan is available. All choices are
kept so that different alternative plans can be developed simultaneously. The ability to
understand what SIPE-2 is doing is enhanced by the ability to highlight a node on the
screen whenever the system is making a decision about that node, e.g., planning for the

node, choosing an operator for the node, or choosing instantiations for the variables at
that node.

The combination of these features allows the user to understand and effectively

control the planning process in domains as large as military operations planning.

3.4 Scheduling

Robust solutions to complex, real-world problems require both planning and schedul-
ing. In this section, we describe how SIPE-2 differs from most scheduling systems and
why it is necessary to combine planning and scheduling. If the set of actions that must
be performed, i.e., the process network, is known beforehand then it is a scheduling

problem to assign resources and times to these actions. On the other hand, if the set
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of actions must be generated based on the current situation and the current goals,
then the problem solution also involves planning which requires that the system rea-
son about how the world changes as scheduled events occur. This is the situation in

military operations planning.

Other features of a scheduling problem can require planning; in fact, problems
are often not separable into distinct planning and scheduling problems. For example,
if some subset of the constraints in a scheduling problem will change depending on
how another subset is satisfied, e.g., if the constraints on the afternoon’s schedule will
change depending on how the constraints on the morning’s schedule were satisfied,
then such a scheduling problem becomes a planning problem. Similarly, if a system is
to modify an existing plan or schedule in response to unexpected occurrences during
execution, then reasoning about the effects of actions and the causal relationships
between actions becomes necessary to determine which subplans remain valid or are
amenable to modification. In most real-world situations, unexpected occurrences are
the norm during operations, and it is important to modify plans quickly in response

to these occurrences.

In SIPE-2, time is treated as a consumable resource that can be consumed but
not produced, and whose consumption over parallel tasks is nonadditive [5, 6]. The
numerical value can be a list of numbers customized for the problem. For example, time
can be represented as (days hours minutes seconds). Each action specification may
have start-time and duretion slots containing variables with numerical constraints on
them that are satisfied by the planner. In particular, a variable can be constrained
to be the value computed by a Lisp function which is generally how durations are

computed.

SIPE-2 will calculate specific values for time variables only when the constraints
force a particular value; otherwise, the aliowable range is computed. When several such
variables haveranges, it is a scheduling problem to determine optimal or desirable times
for each variable. The planner does not have built in algorithms for doing this — good
algorithms often require tailoring to a specific domain. SIPE-2 does have hooks built in

so that external scheduling modules can assign these times. We are currently working
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on developing such a tie with the scheduling systems being developed at Carnegie-
Mellon University (CMU) [4]. However, many research issues must be addressed to

maximize the benefit from such an integration (see Section 6).

SIPE-2 has several techniques for establishing relative orderings of actions. These
techniques include inserting ordering links to avoid resource conflicts, using one action
to meet several different requirements by ordering them after the action, and coordi-
nating separate subplans by adding ordering links to goals that have been declared as
erternal. SOCAP makes heavy use of the latter two techniques; in fact, SIPE-2 was
extended to do more sophisticated reasoning about when and how to achieve several

different requirements by one action in order to support SOCAP.

From the scheduling viewpoint, SIPE-2 creates the project network that must be
scheduled. In addition, it does the part of the scheduling that can be determined
from its hard constraints, and also uses heuristics for adding relative ordering links.
Depending on the specific circumstances, this may do much of the work of establishing
a schedule (as in SOCAP), or it may leave considerable work to be done by another
scheduling module. As described in Section 6, we would ideally like to have a scheduler
interact with the planner during planning, providing values for its time variables based

on scheduling algorithms.

4 SOCAP - System for Operations Crisis Action

Planning

The objective of the IFD-2 version of SOCAP was to demonstrate the feasibility of
applying the Sipe technology to the generation of large-scale military OPLANs. This
was accomplished by developing decision aids for the generation of more flexible and
accurate joint military COAs. To date, no research or development activity has inte-
grated a generative Al planning system into an operational environment. While SOCAP
stresses the demonstration of generative planning techniques, subsequent phases of this

research will emphasize replanning techniques.
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SOCAP includes an application of SIPE-2 to military operations planning together
with a user interface tailored to this domain using a situation-map display system.
Figure 5 shows the architecture, highlighting the necessary inputs for the generation
of COAs and OPLANS, the available outputs, and the user interaction. The following

inputs should be fed into the Socap database from available military databases:

Threat assessment: list of enemy threats, locations, and dates.

Terrain analysis: information on terrain features affecting mobility and
observability.

Apportioned forces: list of combat forces available for planning purposes.

Transport capabilities: list of available assets.
Other inputs would come from the mission commander or his/her joint staff:

Planning goals: list of goals that match mission statement.
Key assumptions: e.g., rules of engagement, non-intervention of third party
forces.

Operational constraints: e.g., overflight privileges, troop limits in country.

Most of the above information is inherently dynamic, and is best represented in
SIPE-2 as first-order statements, such as (threat-enemy istArmBde route-A 25),
which states that there is an enemy threat unit, the 1st Armored Brigade, whose
avenue of approach is denoted by route-A, and that the enemy unit should be countered
by Day 25. There are over 1200 predicate statements in the Socap knowledge base.
However, a great deal of the available data are static (i.e., they do not change over
time as actions are executed), and for efficiency reasons are best represented in the sort

hierarchy and not as predicate statements.

The major (parent) classes represented in the static database are:

Forces: including combat, combat support, and combat service support.
Transports: including air, sea, and ground.

Territory: including land, sea, and air.
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Figure 6: Deter Border Incursion Operator in SIPE-2 Interface

All other entities, such as cargo, equipment, aircraft, ships, routes, regions, urban
areas, etc., are either subclasses derived from the above three classes or are properties of
classes. For example, cargo requirements and combat capabilities for specific combat
forces should be denoted as properties of these forces. There are over 200 classes
and 500 objects in the IFD-2 knowledge base. For efficiency reasons, it is important
to represent static information using the sort hierarchy whenever possible. This is

discussed in Section 5.

SOCAP requires a large set of operators to describe military operations that can
achieve specific employment or deployment goals. For instance, there are a variety
of military operations for deterring an enemy army, navy, or air force. Each of these

operations may be represented by a different Sipe operator which all have the common
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effect of deterring an enemy force. However, they may have different sets of precon-
ditions or different resource requirements that need to be satisfied before they can be

used in a plan.

There are operators at every level of abstraction. The ability of SIPE-2 to plan at
different levels of abstraction naturally maps onto the following levels of the operations

planning process:

Level 1: Select mission type.

Level 2: Identify threats and their locations.

Level 3: Select employment operations, major forces, and deployment
destinations.

Level 4: Add deployment actions.

Section 5 describes how important the hierarchical nature of the planning process is to

the success of SOCAP.

4.1 Applying Operators

It is the operators that capture most of the domain-specific planning capability. There
are currently around 50 Sipe operators in the Socap knowledge base.? Each operator
brings into the plan an appropriate network of military actions and subgoals that
together achieve the purpose of the operator. We have made use of these subgoals
to highlight dependencies on other parts of the plan to provide supporting military

actions such as resupply, close air support, or artillery support.

Figure 6 shows a typical operator for deterring an enemy ground threat as drawn by
the GUL Here we briefly describe how this ground-patrol operator is used to generate a
more detailed plan by the process depicted in Figure 2. Figure 7 shows an abstract plan

produced after the second level of planning during which enemy threats are detected.

4We have recently added 20 deductive operators for correctly deducing location changes.
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Figure 7: Plan after Threat Identification (Level 2}

This plan is a subset of the plan developed for IFD-2, and has four parallel goals of
deterring each of four immediate enemy threats. The second goal, (immediate-threat
enemy-army-B coa-1 26), requires the enemy army to be deterred by Day 26. The
operator shown in Figure 6 is one of four operators applicable to this goal because its
purpose matches the goal. The planner chooses this ground-patrol operator to expand
the plan to level 3, and binds enemy-army-B to the army.2 variable in the operator.
The expansion succeeds because the preconditon of the operator is true; matching the
precondition constrains variables, e.g. urban.2 is constrained to be near route.1 and
within region.1. Additonal constraints (shown in Figure 6) are posted by application

of this operator, e.g., army. 1 must have appropriate firepower and mobility.

The graph on the right side of Figure 6 depicts the instructions for achieving de-
terrence at the next level of detail, which consists of the subgoal (a hexagonal node) of
deploying army . 1, followed by the action (a capsule node) of traversing from urban.1
to urban.2, followed by the action of doing ground patrols in region.1. Figure 8
shows the plan at the next level when all threats have been countered. Both the first
and second threat have been countered by the ground-patrol operator, while the third
and fourth threats have been countered by other operators. In both applications of the
ground-patrol operator, army . 1 was instantiated to be the particular meachnized unit,

mechb, because this unit met the constraints on firepower, mobility, location, etc. The
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Figure 8: Plan after Deterring Threats (Level 3)

plan requires the mechb to do ground patrols simultaneously in the NW-Coastal region
and the NW-Border region (because region.1 was instantiated differently in the two
operator applications). The planner ensures there are no conflicts in the plan and
then plans another level by a similar application of operators to the newly produced
plan. The next planning level will use deployment operators to solve the deployment

subgoals that are now in the plan.

4.2 The User Interface in SOCAP

The Socap interface provides facilities for guiding the user through the plan generation
process. The amount of user interaction can be varied during the planning process.
It can range from being fully automated, in which case a plan is generated with no
human interaction; to semiautomated, in which the user makes some choices; to fully
manual, where the user makes all the choices. At each goal in the plan, the user can
request the relevant operators that achieve the goal to be displayed. Likewise, when
attempting to bind a variable associated with an argument of an operator, the possible
bindings can be displayed. For instance, the user may be presented with the set of
military units that have the appropriate capabilities to deter an enemy threat, or a list

of suitable locations for the military operation. This set may be constrained by the
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preconditions and other constraints associated with the arguments of the relevant Sipe
operator. At the end of each plan level, the plan is checked for logical consistency, and
then progresses to the next level until there are no more goals to be satisfied or actions

to be decomposed further.

The plan may be displayed at each plan level, either as a partially ordered network of
actions and goals, or on a time-based map display. The map display shows the actions
that are occurring on different days during the mission. The temporal information for
the map display is derived from durations associated with each action and from the
dates when the enemy threats should be deterred or countered. Clicking the mouse on
a token on the map display will bring up a window describing the military operation
represented by the token, and the location, times, and units of the operation. A second
mouse click can be used to bring up another window with further information about a

specified military unit, e.g., its current military status or mobilitization status.

Section 5 describes more of the techniques used to encode information. The plans
generated so far have 100 to 200 executable actions in the final plan. (The entire
plan has many times this number of nodes, since some nodes are conditions which help
record the rationale behind the plan and information for repairing it.) The major forces
identified in the plan are then further decomposed by FMERG to their TPFDD-level
components, resulting in 2,500 entries in the TPFDD. For a large-scale military oper-
ation, such as in the Gulf crisis, the number of TPFDD-level entries would probably
be an order of magnitude larger. The IFD-2 knowledge base is by no means complete.
It has fleshed out the skeleton of a much larger set of plan operators, including predi-
cates for describing the current situation, and classes and objects for capturing static

information. A rough estimate for an operational Socap knowledge base is given in
Table 1.

5 Lessons Learned

The lessons learned in applying SIPE-2 to military planning can be divided into three

sections: successes in applying the existing technology, difficulties, and future research.
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Data structure IFD-2 | Operational
classes/objects 500 2,500
properties per object | 5 to 15 50 to 100,

predicates 1,500 15,000
operators 50 to 70 | 500 to 1,000

Table 1: Size of Knowledge Base for Current SOCAP and Operational SOCAP
5.1 Successes

The Sipe hierarchical planning process maps well to the military operations planning
process. As a result, it was relatively easy to group sets of operators according to the
various phases/levels of the operations planning process, described earlier. The hierar-
chical structure of the operators also encourages a similar structure for the predicates
that describe the world. Hence, the preconditions of operators are excellent means of
bringing situational data and information to bear at the relevant planning level and
at the appropriate level of detail. For instance, general locations of enemy threats
and high-level geographic features may be appropriate for the identify-threats level
of the planning process, but more detailed threat assessment, e.g., force composition,
strength, and terrain analysis, are required for the employment planning phase. Fur-
thermore, the hierarchical structure maps well to the chain of command, described in

Section 2.

The sort hierarchy provides a clear representation of static information within
SOCAP. This static information is captured in the properties of classes and objects
that are often used in posting constraints on the arguments of operators. For instance,
the choice of an airfield for a deployment action may rely on having the property
runway-length be long enough for available air transports, such as C-5s, C-141s, and
(C-130s. There is a clear distinction between static information, represented in the sort
hierarchy and as predicate statements, and dynamic information, represented only by

predicate statements. This distinction is important for two reasons: (1) the retrieval
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of static information is more efficient than the retrieval of dynamic information, since
the system does not need to reason about the effects of actions, and (2) the validation

of static information is helped by the tree structure of the sort hierarchy.

The arguments of operators and preconditions are represented-as planning variables
with constraints. This provides a means of delaying the binding of specific instances
to these variables until the constraints select the most appropriate instance. This
least-commitment approach to variable binding is an important capability provided by
SIPE-2, that is heavily used in SOCAP. SOCAP also makes use of the planner’s ability
to force the binding of these variables with user guidance. For instance, this facility

may be used to force the selection of favored military units for specific operations.

SIPE-2 provides a mechanism for permitting situational knowledge to determine the
number of specific subgoals introduced into a plan. For instance, in order to determine
how many enemy threats to counter, the system checks the number of enemy threat
units identified in the threat assessment database and generates a subgoal for each.
This mechanism permits iteration where the number of iterations is determined by
the situational data, rather than provided in advance. There are a variety of these
iterative operators that search for different types of enemy threats, whether ground,
sea, or air. Section 5.2 discusses problems concerning the number and choice of sub-

goals introduced by this mechanism.

SIPE-2 permits a great deal of information to be presented to the user at a variety
of levels of detail. As a result, the GUI has many menus that can be called to access
this information, and using it effectively requires some knowledge of the workings of
the planner. The GUI is thus better suited for developing applications than for using
an application operationally. The Socap interface, on the other hand, is tailored to the
military crisis action planning environment. In particular, it stresses the interactive
nature of the planning process, and extracts appropriate details during the planning
process and presents them to the user. Thus, when a user is viewing the possible
choices of military units for an operation, SOCAP presents the constraints that led
to these choices. It is possible to view all the possible instantiations of a planning

variable, given the constraints associated with the variable, whether it represents a
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military unit, resource, location, or time. Operator choices for extending the plan
are displayed, and the plan structure produced is highlighted, including the effects
achieved and the preconditions that must be satisfied. The ability of the Sipe GUI to
highlight specific information about the plan or its structure is particularly useful in
the Socap interface. This includes highlighting nodes that contain certain predicates
or arguments, and highlighting the predecessors, successors, and actions in parallel for

a given action.

A time-based map display provides another means of displaying the plan that is
particularly appealing to military planners. This map display is currently being devel-
oped to display situation data or overlays on a digitized map. It is possible to show
the operations that occur on each day of the mission and display appropriate infor-
mation about the type of military operation, the units involved, and the boundary of
the operation. In this way, the user can query what is going on, where and when, in
the context of map information. We have used this map display to represent both the
employment plan on a detailed map of the area of interest and the deployment plan

on a coarser-grained map.

5.2 Difficulties

SOCAP did not extensively use the Sipe resource reasoning capability for three reasons.
First, dealing effectively with resource conflicts involves balancing various tradeofts.
This requires complex representations of hard and soft constraints and mechanisms for
constraint relaxation. Most Al planning systems (including SIPE-2) do not have these
capabilities, and instead rely on the representation of hard constraints and constraint
satisfaction algorithms. Second, an algorithm tailored to this particular domain would
be necessary to intelligently assign resources. For instance, when choosing military
units for operations, in order to minimize the number of troops involved in the oper-
ation, it is often wise to choose units already involved in the plan, except when they
have been overused. In addition, there must be information to allow balancing such a

desire with other conflicting heuristics.
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Finally, although SIPE-2 does have a mechanism for representing shareable re-
sources, it must be determined in advance how such resources might be shared. This is
too inflexible for military operations planning. For instance, a large military unit, such
as a division, may be employed in several operations simultaneously, where each oper-
ation uses some of the division’s capabilities. The number of operations over which the
division may be shared depends on the amount of resources required for each operation.
Thus, the only way to reason about the shared resource is to consider the capabilities

of the division as a consumable resource purely for this specific set of operations.

Each of these three problems is difficult and best addressed with technology that
relaxes soft constraints in search of an optimal solution, e.g., the scheduling technology

at CMU. An integration of planning and scheduling, as described in Section 6, is needed
to address these problems.

Another difficulty is the limited temporal reasoning in SIPE-2. Two Sipe actions are
either ordered with respect to each other, or they are unordered. If the latter, the plan-
ner considers it possible to order them in either order or execute them simultaneously.
Information about start times and durations is only used when it can be deduced that
two actions should be ordered based on this information. This is limiting; for example,
one cannot model when during the execution of an action its various effects become
true, nor can one model actions that must occur simulatenously. Allen’s 13 temporal
relations [1] would have been useful. This would have permitted more versatile op-
erations with explicit representation of actions starting or finishing at the same time,
overlapping each other, or one occurring during another. Many dependencies between
different military actions could have been represented in this way. For instance, cargo
offload teams should arrive at the same time as the first air or sea transport arrives at
the air or sea port, the deployment of troops to their destination should overlap the
deployment of supplies and equipment, and close air support should take place during

a ground offensive operation.

Another useful capability is the serendipitous combination of subgoals. For instance,
at present, for every enemy threat identified, a friendly unit is identified to deter

or counter it. If several small enemy forces are located close to each other, SOCAP
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attempts to deal with each threat individually, rather t]:;a.n considering them as an
aggregate threat that might be countered with a single, larger, friendly force. Whether
the aggregation is done by the user or by some algorithm, it is important that the
original subgoals be replaced by a new subgoal.

Currently, it is cumbersome to represent the notion of a task force whose composi-
tion is determined dynamically by whichever military units were assigned to lower-level
actions. It is possible to represent a class of objects of type task-force and make use
of a part-of predicate to relate specific military units to a specific task force, but this
is not perspicuous. This notion of a higher-level term used to describe the combination
of lower-level objects is an important aspect of military planning. For instance, a mil-
itary brigade that comprises three battalions may be split into two or more battalion
task forces that could make use of the battalions within the brigade, or additional units
and resources from other brigades or divisions. It is important to make reference to
the battalion task force at higher levels of the plan, especially when coordinating with
other task forces or higher-level units. It is also necessary to ensure that the capabilities

of the task force are explicitly represented so that they are not overutilized.

Another problem involves the lack of an explicit mechanism for reasoning about
the order in which goals should be achieved. SIPE-2 supports operators that delay
solving of a goal for one planning level when the preconditions of the operator are
true. For instance, one may decide to achieve all employment goals first and only start
on the deployment goals when the employment goals have been satisfied. However,
having to encapsulate such a heuristic in the preconditions of an operator is not ideal.
One solution is to permit the developer to specify an algorithm to weigh trade-offs
between several heuristics that determine which goals to satisfy next. This would
allow expansion of some parts of the plan down to a detailed level, while other parts of
the plan might be kept at a higher planning level, thus allowing details associated with
one part of the plan to be specified before another part of the plan, which depends on
these details, is formulated. The O-Plan architecture provides a framework for doing

this type of reasoning {3].
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6 Future Work

This section describes the important issues that SRI plans to address in the future, in
conjunction with other research groups in the Planning Initiative. During the planning
process, many decisions have to be made concerning the choice of operations, mili-
tary forces, resources, locations and times. To reason about the various possibilities
requires using a variety of simulators, case-based reasoners, and decision-theoretic and
uncertain reasoning aids for guiding such choices. The simulators may perform fea-
sibility analyses for combat, logistics, transportation, command and control and the
like. Case-based reasoners would explore the similarity between the current situation
and previous examples (or cases) of missions that employed specific operations, forces,
and resources, at certain locations and times. Decision-theoretic aids and uncertain
reasoning techniques can be applied to determine the utility of specific choices, and to
provide probabilistic measures of success that could be used to determine the alterna-
tives to be explored and enumerated. The above techniques could be applied during
the planning process to guide choices, or afterward to evaluate the plan(s) developed.
Such techniques could also provide metrics for identifying qualitatively different COAs.

During the Socap project, a simple simulator was used as a postprocess to determine
the transportation feasibility of the COA. The output of the simulator included a list
of the number of military forces that were predicted to arrive late at their destinations.
The input to this simulator required specific times to be associated with the movement
actions in the deployment plan. Ideally, a TPFDD is the proper input to the simulator.
The Planning Initiative includes work on simulation and scheduling systems that could

be used for determining transportation feasibility.

6.1 Replanning and Knowledge Acquisition

During IFD-2, the emphasis was on demonstrating the feasibility of applying plan gen-
eration techniques to the crisis action planning process. By stressing the generation of

plans, it was possible to focus attention on describing the different types of military
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operations, forces and their capabilities, and using situational data to guide the nec-
essary choices during planning. However, in a crisis the situation is changing rapidly.
Previous decisions need to be revised and new goals need to be satisfied. Replan-
ning techniques are required to reuse as much as possible of the existing plan while
modifying it appropriately.

To complicate matters further, not only is the situation changing rapidly, the envi-
ronment is uncertain. It will be necessary to develop techniques to reason about how
the uncertainty in the situational data affects the planning choices. This is important
both for selecting operators, which may now have uncertain effects, and for selecting
units for use in the plan. Exploring the use of uncertainty measures to determine the
robustness of plans or the sensitivity of plans to changes is also important. An ongoing

effort at SRI is investigating planning and executing in uncertain environments.

Military operations planners who viewed SOCAP often asked about support facilities
for updating and writing new operators. This involves providing facilities for check-
ing that the preconditions and effects are syntactically and semantically correct. An
ongoing effort at SRI [7] has specified the ACT formalism and developed an interac-
tive editor for inputing operators in this formalism which can be translated to SIPE-2.
However, algorithms to ensure that the revised or new operators do not adversely affect
other existing operators would also be needed. This is a difficult problem that may

provide an excellent domain for machine learning techniques.

6.2 Integrating Planning and Scheduling

Another important research area is the relationship between, and integration of, plan-
ning and scheduling techniques. Current research work (involving SRI and CMUj)
is investigating the integration of SIPE-2 with the OPIS (Opportunistic Intelligent
Scheduler) scheduling technology developed at CMU. This research will be conducted

in several phases.

The first phase will provide a Sipe plan as input to the OPIS system, and send

feedback to the planner concerning resource conflicts that present difficulties to OPIS.
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The second phase will examine the integration of capacity planning techniques during
the plan generation and replanning processes to aid the early assignment ‘of resources
based on projections of predicted resource bottlenecks. The third stage will investigate
more closely the guidance to the scheduling process that can be provided by the de-
pendency structure of the plan, the choices made during the plan generation process,

and, the alternative choices that are recorded in the plan state.

We will examine how information from the scheduling process might be used to
guide replanning. For example, the scheduler might provide information that suggests
which alternative miltary actions should not be considered because they make use
of over-utilized resources. Providing such information during the replanning process
would reduce resource conflicts during the subsequent re-scheduling process. Con-
trolling the planning and scheduling processes poses some difficult questions, such as:
When should the system stop plan generation and run the scheduler or can they run
simultaneously? When can the scheduler repair a plan and when must the planner be
used for plan repair? When should the system simulate the execution of the plan and

how should the simulation interact with the planner and scheduler?

7 Conclusions

SOCAP successfully demonstrated that AI planning techniques can be used for the
generation of large-scale military OPLANs. It provides the first steps toward an oper-
ational prototype that can be tested on real military crises, although it has so far been
tested on only one scenario. It shows how the domain requirements of the application
drive research in Al planning technologies, and how rapidly these evolving tools and

techniques can be transferred to the application.

SIPE-2 supported efficient plan generation for this scenario. The effectiveness and
efficiency stemmed from its hierarchical planning process (which naturally fit the hi-
erarchical structure of the domain), extensive use of its sort hierarchy for encoding
military databases, the ability to place constraints on planning variables, its powerful

graphical interface for viewing plans and data, and the interactive planning capabil-
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ities. Several difficulties were identified, however, including the inability to reason
about complex temporal information, lack of an ability for encoding a domain-specific
algorithm for assigning resources to actions, an inability to combine subgoals, and lack

of a mechanism for reasoning about when goals should be achieved.

Producing decision aids that will help military planners in an operational setting
will involve the integration of several ongoing research areas in the Planning Initia-
tive. These include machine learning, scheduling, plan repair, case-base reasoning,

simulation, and uncertain reasoning techniques.
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